
 

 

 

 

 

University of Basrah  

College of Engineering  

Computer Engineering Department 

 

Digital Systems Design (CoE233)  
First Course 2022-2023 

 

Hardware Description Language  
 

  



Digital Systems Design CoE233                                                                            2nd Class  

Page | 2                                                                                                                              Prepared by: Dr. Dunia S. 

 

Introduction to VHDL 

• VHDL is a Hardware Description Language (HDL). It describes the behavior of an electronic circuit 

or system. 

• VHDL is a standard, technology/vendor independent language, and is therefore portable and reusable. 

• VHDL code has been written, it can be used either to implement the circuit in a programmable device 

(from Altera, Xilinx, Atmel, etc.) or any other chips.  

• The two most popular hardware description languages are VHDL and Verilog. 

• The acronym VHDL stands for 

 VHSIC Hardware Description Language (VHSIC =Very High-Speed Integrated Circuits). 

• A Hardware Description Language (HDL) allows a digital system to be designed and debugged at a 

higher level before implementation at the gate and flip-flop level. 

• VHDL is insensitive, that is, capital and lower-case letters are treated the same by the compiler and 

the simulator.  

For example: 

CLK <= NOT clk; 

clk <= not CLK; 

•  The symbol “<=” is the signal assignment operator which indicates that the value computed on the 

right-hand side is assigned to the signal on the left side. 

• Comments in VHDL are indicated with a "double dash", i.e., "--". 

       Example: 

-- main program 

 Data_in <= Data_bus; -- reading data 

• VHDL Simulator is used to verify the correct functioning of the circuit in terms of waveforms 

showing input and output signal variations. 

• VHDL Synthesizer is used to translate the source code to a description of the actual hardware circuit 

that implements the code.  The output of synthesizer can be used directly to implement actual circuit 

in FPGA. 

• VHDL description includes two parts: 

➢ Entity  

➢ Architecture  

 

 

  



Digital Systems Design CoE233                                                                            2nd Class  

Page | 3                                                                                                                              Prepared by: Dr. Dunia S. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• One of the major utilities of VHDL is that it allows the synthesis of a circuit or system in a programmable 

device (PLD or FPGA). The steps followed during such a project are summarized in Figure 1. 

• We start the design by writing the VHDL code, which is saved in a file with the extension .vhd and the 

same name as its ENTITY’s name.  

• The first step in the synthesis process is compilation.  

 Compilation is the conversion of the high-level VHDL language, which describes the circuit at 

the Register Transfer Level (RTL), into a netlist at the gate level.  

• The second step is optimization, which is performed on the gate-level netlist for speed or for area. At 

this stage, the design can be simulated.  

• Finally, a place and route (fitter) software will generate the physical layout for a PLD/FPGA chip. 

  

Figure 1 Summary of VHDL design flow 

 



Digital Systems Design CoE233                                                                            2nd Class  

Page | 4                                                                                                                              Prepared by: Dr. Dunia S. 

 

VHDL Code Structure   

VHDL consists at least three fundamental sections. 

 Section Detail 

1 
LIBRARY 

declarations 

Contains a list of all libraries to be used in the design. For example: IEEE, 

STD, work, etc. 

2 ENTITY Specifies the I/O pins of the circuit. 

3 ARCHITECTURE 
Contains the VHDL code proper, which describes how the circuit should 

behave(function). 

 

 

LIBRARY  

Basic VHDL code 

 

ENTITY 

 

ARCHITECTURE 

 

                                           Figure 2  Fundamental sections of a basic VHDL code 

1. Library 

A LIBRARY is a collection of commonly used pieces of code. Placing such pieces inside a library allows 

the programmer to be reused or shared by other designs. The typical structure of a library is illustrated in 

the Figure 3: 

 

 

 

  

Figure 3 Fundamental parts of a LIBRARY 



Digital Systems Design CoE233                                                                            2nd Class  

Page | 5                                                                                                                              Prepared by: Dr. Dunia S. 

 

Library Declarations 

To declare a LIBRARY (that is, to make it visible to the design) two lines of code are needed, one 

containing the name of the library, and the other a use clause, as shown in the syntax below: 

 

At least three packages, from three different libraries, are usually needed in a design: 

 IEEE.STD_LOGIC_1164 (from the IEEE library);  

- Specifies digital logic system, including STD_LOGIC, and STD_LOGIC_VECTOR 

types. 

 Standard (from the STD library);  

- Specifies built-in data types (BIT, BOOLEAN, INTEGER, REAL, SIGNED, 

UNSIGNED, etc.), arithmetic operations, basic type conversion, etc. 

 Work (work library);  

- Holds current designs after compilation 

Their declarations are as follows: 

LIBRARY IEEE; 

USE ieee.std_logic_1164.all; 

 

LIBRARY std; 

USE std_standard.all; 

 

LIBRARY work; 

USE work.all; 

 

The IEEE library contains several packages: 

• STD_LOGIC_1164 

• STD_LOGIC_ARITH 

• STD_LOGIC_SIGNRD 

• STD_LOGIC_UNSIGNED  



Digital Systems Design CoE233                                                                            2nd Class  

Page | 6                                                                                                                              Prepared by: Dr. Dunia S. 

 

2. Entity 

The main part of an ENTITY is PORT, which is a list with specifications of all input and 

output ports (pins) of the circuit.  

Entity declaration form: 

 

 

 

 

 

 

 

 

 

Note:  

 The name of the entity can be basically any name, except VHDL reversed words. 

 Ports have name, mode, and datatype. 

 Port names always begin with a letter and consist of letters, digits, and/or underscores. 

 The mode of signal can be IN, OUT, INOUT, or BUFFER. 

 IN and OUT are truly unidirectional pins, while INOUT is bidirectional.  

 BUFFER is used when the output signal must be used(read) internally as shown in Figure 4 below: 

 

 

 

 

 

 

Example: Write the appropriate entity definition for OR gate with 2 inputs. 

 

                                                                                  

                                                                     

Z                                                           

                                      

  

ENTITY entity_name IS 

PORT (signal_name1 : mode   signal type; 

           signal_name2 : mode   signal type; 

                  : 

          signal_nameN : mode   signal type); 

END entity_name; 

 

 

Figure 4 Signal modes 



Digital Systems Design CoE233                                                                            2nd Class  

Page | 7                                                                                                                              Prepared by: Dr. Dunia S. 

 

3. Architecture 

Architecture describes the circuit implementation (systems’ behavior).  

Architecture declaration form: 

 

 

 

 

 

 

 

As shown above, architecture has two parts: a declarative part (optional), where signals and constants are 

declared, and the code part. 

The name of an architecture can be basically any name (except VHDL reversed words), including the same 

name as the entity’s name. 

Example: Write a VHDL code for OR gate with 2 inputs. 

  

ARCHITECTURE  architecture_name OF  entity_name IS 

[declarations: type, signal, constant, function, procedure, component] 

BEGIN 

Code (Architecture Body); 

END architecture_name; 

 

 



Digital Systems Design CoE233                                                                            2nd Class  

Page | 8                                                                                                                              Prepared by: Dr. Dunia S. 

 

Modeling Wires and Buses  

Signals 

 

SIGNAL a: STD_LOGIC;  

 

SIGNAL b: STD_LOGIC_VECTOR (7 DOWNTO 0);  

 

 

 

Standard Logic Vectors 

Example 1: 

 

 

 

 

 

 
 

 

 

 

Example 2: 

 

 

  



Digital Systems Design CoE233                                                                            2nd Class  

Page | 9                                                                                                                              Prepared by: Dr. Dunia S. 

 

Merging Wires and Buses  

Example:  



Digital Systems Design CoE233                                                                            2nd Class  

Page | 10                                                                                                                              Prepared by: Dr. Dunia S. 

 

Data Types  
There are two types of data types. 

1. Pre-defined data types 

2. User-defined data types 

 

1. Pre-defined data types 

VHDL contains a series of pre-defined data types, such data type definitions can be found in the following 

packages/ libraries: 

Package  standard of library std: Defines: 

✓ BIT 

✓ BOOLEAN 

✓ INTEGER 

✓ REAL 

Package  std_logic_1164 of library ieee: Defines: 

✓ STD_LOGIC 

✓ STD_ULOGIC 

Package  std_logic_arith of library ieee: Defines: 

✓ SIGNED 

✓ UNSIGNED 

Also defines several data conversion functions, like  

✓ conv_integer(p) 

✓ conv_unsigned (p,b) 

✓ conv_signed (p,b) 

✓ conv_std_logic_vector(p,b) 

Packages  std_logic_signed and std_logic_unsigned of library ieee contain functions that allow operations 

with STD_LOGIC_VECTOR data to be performed as if data were of type SIGNED or UNSIGNED, 

respectively.  

1. BIT (‘0’, ‘1’) and BIT_VECTOR  

Examples: 

signal x: bit; 

signal y: bit_vector(3 downto 0); 

signal w: bit_vector(0 to 7); 

------------------------------------- 

x <= ’1’; 

y <= ”0111”; 

w <= ”01110001”; 

------------------------------------- 

 

 



Digital Systems Design CoE233                                                                            2nd Class  

Page | 11                                                                                                                              Prepared by: Dr. Dunia S. 

 

2. STD_LOGIC and STD_LOGIC_VECTOR 

IEEE standard 1164 provides a standard data type (STD_LOGIC) with eight values. Object of these types 

can have the following values: 

Value  Meaning 

′X′ Forcing (Strong driven) Unknown 

′0′ Normal 0; Forcing (Strong driven)  

′1′ Normal 1; Forcing (Strong driven)  

′Z′ High Impedance 

′W′  Weak (Weakly driven) Unknown Logic Value 

′L′ Weak (Weakly driven) 0. 

′H′ Weak (Weakly driven) 1. 

′-′ Don't Care 

Examples: 

signal x1: std_logic; 

signal x2: std_logic_vector(3 downto 0); 

------------------------------------- 

x1 <= ‘0’; 

x2 <= “ZZZZ”; 

------------------------------------- 

3. STD_ULOGIC and STD_ULOGIC_VECTOR 

9-level logic system introduced in the IEEE 1164 standard (′U′, ′X′, ′0′, ′1′, ′Z′, ′W′, ′L′, ′H′, ′-′).  

(U: means Uninitialized). 

4. BOOLEAN: True, False. 

5. INTEGER: 32-bit integers from -2,147,483,648 to +2,147,483,647. 

6. NATURAL: Non-negative integers from 0 to +2,147,483,647. 

7. POSTIVE: An integer in range 1 to +2,147,483,647 

8. REAL: Real numbers ranging from - 1.7e38 to +1.7e38 

9. Physical literals:  

A physical type is one that contains both a value and units. In VHDL, time is the primary supported 

physical type. 

Type  Values that the type can take on  

Time 

(unit relationships) 
fs 

(Femtosecond, 10-15), 

base unit 

 ps = 1000 fs  (Picosecond, 10-12) 

 ns = 1000 ps  (Nanosecond, 10-9) 

 μs = 1000 ns  (Microsecond, 10-6) 

 ms = 1000 μs  (Millisecond, 10-3) 

 s = 1000 ms  (Second) 

 min = 60 s  (Minute) 

 h = 60 min  (Hour) 

 



Digital Systems Design CoE233                                                                            2nd Class  

Page | 12                                                                                                                              Prepared by: Dr. Dunia S. 

 

The base unit for time is fs, meaning that, if no units are provided, the value is assumed to be in 

femtoseconds. 

10.   Character literals: Single ASCII character or a string of such characters. 

11.   SIGNED and UNSIGNED: data types defined in the std_logic_arith package of the IEEE 

library. 

Example 1: 

signal x1, x2: unsigned (3 downto 0); 

 

x1 <= ”0101”;  -- decimal 5 

x2 <= ”1101”;  -- decimal 13   
 

Example 2: 

signal x1, x2: signed (3 downto 0); 

 

x1 <= ”0101”;  -- decimal 5 

x2 <= ”1101”;  -- decimal -3   

 

Example 3: 

 

x1 <= ’0’;            -- bit, std_logic, or std_ulogic value ‘0’ 

x2 <= ”00001111”;     -- bit_vector, std_logic_vector 

x3 <= B”101111”;      -- Binary representation of decimal 47 

x4 <= O”57”;          -- Octal representation of decimal 47 

x5 <= X”2F”;          -- Hexadecimal representation of decimal 47 
x6 <= 1200;           -- Integer 

IF ready THEN ….                      –- Boolean, executed if ready=TRUE 

x7 <= 1.2E-5;         -- Real 
x8 <= d after 10 ns;  -- Physical 

 

Example 4: Legal and illegal operations between data of different types. 

signal a: bit; 

signal b: bit_vector(7 downto 0); 

signal c: std_logic; 

signal d: std_logic_vector(7 downto 0); 

signal e: integer range 0 to 255; 

---------------------------------------------------------------------- 

a <= b(5);    -- legal(same scalar type: bit) 

b(0) <= a;    -- legal(same scalar type: bit) 

c <= d(5);    -- legal(same scalar type: std_logic) 

d(0) <= c;    -- legal(same scalar type: std_logic) 

a <= c;       -- illegal(type mismatch: bit x std_logic) 

b <= d;       -- illegal(type mismatch: bit_vector x std_logic_vector) 

e <= b;       -- illegal(type mismatch: integer x bit_vector) 

e <= d;       -- illegal(type mismatch: integer x std_logic_vector) 

---------------------------------------------------------------------- 

 

  



Digital Systems Design CoE233                                                                            2nd Class  

Page | 13                                                                                                                              Prepared by: Dr. Dunia S. 

 

2. User-defined data types 

 

• VHDL also allows the user to define his/her own data types. 

• There are two types of user-defined data types: integer and enumerated. 

•  General form: 

           Type  type_name  is  type_definition; 

 

1. User-defined integer types 

Examples: 

       Type integer is range -2147483647 to +2147483647; 

Type natural is range 0 to +2147483647; 

Type my_integer is range -32 to 32; 

Type student_grade is range 0 to 100; 

 

2. User-defined enumerated types 

Examples: 

Type bit is (’0’,’1’); 

Type my_logic is (’0’,’1’,’Z’); 

Type color is (red, green, blue, white); 

Note: Assume   Red = 00 

                          Green = 01 

                          Blue = 10 

                          White = 11 

 

  

  



Digital Systems Design CoE233                                                                            2nd Class  

Page | 14                                                                                                                              Prepared by: Dr. Dunia S. 

 

Array  

• Arrays are collections of objects of the same type. 

• They can be one-dimensional(1D), two-dimensional (2D), or (1D x 1D). 

• They can also be of higher dimensions. 

• Useful for modeling ROMs, RAMs, Busses. 

• The construction of data arrays can be illustrated as shown below: 

➢ A single value (scalar) is shown in (a) 

➢ A vector (1D array) in (b) 

➢ An array of vectors (1D x 1D) in (c), and 

➢ An array of scalars (2D array) in (d). 

0 

 

 

 

 

 

(a) 
 

0 1 0 0 0 

     

 

 

 

 

(b) 
 

0 1 0 0 0 

     

1 0 0 1 0 

     

1 1 0 0 1 

     

  (c)   
 

0  1  0  0  0 

         

1  0  0  1  0 

         

1  1  0  0  1 

         

(d) 

 

• Scalars: bit, std_logic, and Boolean. 

• Vectors: bit_vector, std_logic_vector, integer, signed, and unsigned. 

• To specify a new array type: 

Type type_name is array(specification)of data_type; 

Signal signal_name: type_name; 

• Example: 1D x 1D array 

Type row is array (7 downto 0) of std_logic;   --1D array 

        Type matrix is array (0 to 3) of row;          --1D x 1D array 

        Signal a: matrix; 

   Signal b: row; 

   Signal c: std_logic_vector(7 downto 0); 

         Is b  equal to c? 

 

 

 

 

 

 7 6 5 4 3 2 1 0 

0 - - - - - - - - 

         

1 - - - - - - - - 

         

2 - - - - - - - - 

         

3 - - - - - - - - 



Digital Systems Design CoE233                                                                            2nd Class  

Page | 15                                                                                                                              Prepared by: Dr. Dunia S. 

 

 Type matrix is array (0 to 3) of std_logic_vector(7 downto 0); --1D 

array    

 Signal x1: matrix; 

 

 7 6 5 4 3 2 1 0 

0 - - - - - - - - 

         

1 - - - - - - - - 

         

2 - - - - - - - - 

         

3 - - - - - - - - 

 

• Example:  2D array 

Type matrix is array (0 to 3, 7 downto 0) of std_logic; --2D array    

Signal x: matrix; 

 

 

 

 

 

 

 

 7  6  5  4  3  2  1  0 

0 -  -  -  -  -  -  -  - 

                

1 -  -  -  -  -  -  -  - 

                

2 -  -  -  -  -  -  -  - 

                

3 -  -  -  -  -  -  -  - 



Digital Systems Design CoE233                                                                            2nd Class  

Page | 16                                                                                                                              Prepared by: Dr. Dunia S. 

 

Example: Write VHDL code to implement the following logic functions using a 8 words × 

4 bits ROM. 

F0 = Σ (0, 1, 4, 6)  

F1 = Σ (2, 3, 4, 6, 7)  

F2 = Σ (0, 1, 2, 6)  

F3 = Σ (2, 3, 5, 6, 7)  

 

 

 

 

H.W.: Write VHDL code to implement the following logic functions using 16 words ×3 

bits ROM. 

W = A′B′C + C′D + ACD′ 

X = A′C′ + B′D 

Y = BD′ + B′C′D 

 


